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ABSTRACT 

The secular  charac te r i s t ics  of the  motion of as te ro ids  in resonance 

with Jupiter are  analyzed. The Trojan group is given special  attention 

by a description of these character is t ics  in a complete qualitative and 

quantitative manner .  Except for collision orbi ts ,  the  eccentricity and 

inclination of the asteroid can take any value. The short-period per turba-  

t ions caused by Jupiter are  averaged by a nonlinear numerical  application 

of von Zeipel 's  method. Elimination of the resonant argument  is ca r r i ed ,  

in  a semianalytical  way, t o  an  approximation of the o rde r  of the mass of 

Jupi ter .  

i soenerget ic  curves  in the phase plane (a, e ) .  
allow a description of the general  fea tures  of motion for  a very long t ime .  

The final system, with one degree of f reedom,  is represented by  

The var ious s teps  of solution 

RI?SUME? 

Les c a r a c t b r i s t i q u e s  sgcu la i r e s  du mouvement des ast6roi'des en r d s o -  
Une a t t e n t i o n  p a r t i c u l i & r e  a e ' td por- nance avec J u p i t e r  sont  analysbes. 

te'e au groupe Troyen pour lequel l a  desc r ip t ion  complGte q u a l i t a t i v e  e t  

q u a n t i t a t i v e ,  de ces  c a r a c t 6 r i s t i q u e s  e s t  prksent6e.  S i  l ' o n  excepte l e  

cas des  o r b i t e s  de c o l l i s i o n ,  l l e x c e n t r i c i t k  e t  l ' i n c l i n a i s o n  des  ast6- 
roi'des peuvent prendre n'importe q u e l l e s  va leurs .  La moyenne des  per tub-  

ba t ions  de cour te  durbe cause'es par  J u p i t e r  e s t  obtenue par  une appl ica-  

t i o n  numbrique non-l indaire  de  la me'thode de von Zeipel .  

de 1 'argument de re'sonance e s t  poursuivie de maniGre semi-analytique 
j u s q u ' i  un degr; d'approximation de l ' o r d r e  de l a  masse de J u p i t e r .  

systgme f i n a l ,  

ga l e  gnergie  dans l e  p lan  des  phases ( w ,  e ) .  L e s  d i f fe ' ren tes  dtapes de 

s o l u t i o n  permettent une descr ip t ion  des  proprie'tGs gbn6rales du mouvement 

pour une p6riode de temps tr&s gtendue. 

L 'd l imina t ion  

L e  

un degr; de l i b e r t b ,  e s t  reprgsentb par  des  courbes d ' e -  
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SECULAR MOTION O F  RESONANT ASTEROIDS 

G. E. 0. Giacaglia 

1 .  INTRODUCTION 

Many ef for t s  have been made to descr ibe the propert ies  of two-dimensional 

orbi ts ,  n e a r  the 1 / 1 resonance case, in the res t r ic ted  three-body problem. 

Most of them make use of a l inear ana lys i s ;  that i s ,  they deal with l ibration 

orbi ts  in  the vicinity of the tr iangular equilibrium points. 

t o  eliminate every restr ic t ion,  with the exception of collision orb i t s .  

This work t r i e s  

The numerical  application of von Zeipel ' s  method avoids all questions 

concerning the convergence of the s e r i e s  for  the elimination of short-per iod 

t e r m s  in  the Hamiltonian function. 

osculating eccentricity ( less  than unity) and of the inclination. 

depa r tu re  f r o m  the equilibrium Lagrangian points i s  a r b i t r a r y  (always 

assuming that the mean  motion is c lose to  that of Jupi ter) ,  special  ca ses  of 

i n t e re s t  may be included, such as,  f o r  instance,  the outer satel l i tes  of Jupi te r .  

It is well known that there  a r e  satell i te problems in  which the perturbations 

f r o m  the sun a r e  so seve re  that both satel l i te  and planetary theor ies  fail to  

give resu l t s  valid f o r  longer than a few hundred revolutions. Since secular  

f ea tu re s  may have periods up t o  severa l  million revolutions, such resu l t s  

a r e  absolutely useless  when those fea tures  a r e  to be determined.  To the 

present ,  the best  method of analysis of very unusual satell i te orbi ts  s t i l l  

r ema ins  Kovalevsky's method of computing numerical  coefficients for  the 

representat ive Four i e r  s e r i e s .  

I ts  validity extends to any value of the 

Since the 

This  work was  supported in  p a r t  by Grant  NsG 87-60 f rom the National 
Aeronautics and Space Administration. 
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P u r e  numerical  integration not only gives very res t r ic t ive  resu l t s  with 

l i t t le chance of extrapolation but a l so  becomes completely meaningless after 

a sufficiently long t ime,  owing to round-off and truncation e r r o r s .  

i f  these e r r o r s  could be efficiently controlled, no available computer is  able 

to  per form,  in  a reasonably shor t  time, an integration for  periods of the 

o r d e r  of millions of y e a r s .  

Even 

I t  is hoped that the present  r e sea rch  may furnish a way of handling the 

problem of exceptional planetary and satell i te orbi ts  in a m o r e  systematic  

and uniform way, 

by G .  Hori  with the collaboration of the author of these notes (Hori and 

Giacaglia, 1965) ;  i t  produced highly sat isfactory resul ts  when applied to 

the problem of the secular  motion of Pluto in resonance with Neptune. 

In fac t ,  by this method it has been possible to predict  all qualitative and 

approximate quantitative fea tures  of that  motion; these resu l t s  agree  with 

the numer ica l  integration performed by Cohen (Cohen and Hubbard, 1965; 

Cohen, Hubbard, and Oesterwinter,  1967). 

A theory analogous to the one presented here  was developed 

I t  should be remarked  that one of the main difficulties found in the 

development of a general  perturbation theory for  resonant as te ro ids  with 

nonzero inclination to the orbi ta l  plane of Jupiter is  the presence  of two 

slowly varying angular variables:  the argument  of perihelion and the resonance 

argument  (a l inear integral  combination of the mean longitudes of the as te ro ids  

and Jupi ter) .  

tion of von Z e i p e l ' s  method, that doubly degenerate  phenomenon can  be brought 

into a fo rm that can be t reated mathematically.  

resu l t s  by Arnold (1  963), Moser  (1 967), and Giacaglia (1 967) concerning 

von Zeipel 's  method, there  seems  to be some hope that the process  will 

converge. 

eccentricity and inclination; this fact  overcomes the g rea t  obstacle of an  

analytic development of the disturbing function. 

W i t h  the choice of appropriate  var iables  and a careful  applica- 

Moreover ,  in view of recent  

Fur ther ,  the numer ica l  p rocess  allows any values to  be used for  

. 
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2.  GENERAL THEORY 

. 

In this section, we consider  the motion of an infinitesimal m a s s  point 

(as teroid)  in the gravitational field of two par t ic les  (the sun and Jupi ter)  

revolving in c i rcu lar  orbi ts  around the i r  common center  of m a s s .  

model  and units used throughout a r e  those of the three-dimensional r e s t r i c t ed  

problem of three bodies (Szebehely, 1967). We will a s sume  that the mean  

motion of the asteroid and that of Jupiter a r e  in a close,  low-order ,  ra t ional  

relation. 

The 

The equations of motion of the as te ro id  can be wri t ten 

where  1 
the usual Delaunay var iables ,  with the exception of h, the longitude of the 

ascending node reckoned f rom the instantaneous position of Jupi ter ,  which 

= 1, l 2  = g, l 3  = h = R  - A L = L, L2 = G, and L = H a r e  1 1' 1 3 

is  defined by i ts  mean longitude A I  . 
the re ference  system rotates  about the z axis in such a way that the x axis  

always contains Jupiter in c i rcular  orbi t  a t  unit distance f rom the sun. 

The or igin i s  taken at the sun, and 

Since our present  in te res t  i s  long-range behavior, the indirect  pa r t  of 

With the above assumptions,  the the disturbing function will be neglected. 

Hamiltonian f can be wri t ten 
* 

where  A and r a r e  the dis tances  asteroid-Jupi ter  and asteroid-sun,  

respectively,  and E = m,/(m, + m l )  . Let  nl = 1 be the mean motion of 

3 



Jupi ter  and n that of the asteroid.  

the relation 

The near - resonance  case corresponds to  

"1 - N  E 
n q J  ( 3 )  

where p and q a re  s m a l l  relatively pr ime in tegers .  

p < q ,  and for  superior ones p > q.  

longitude of the asteroid,  will therefore  vary slowly, and we cal l  i t  the 

resonance argument.  

i s  sma l l  a s  compared with unity (how small it is we will  l a t e r  define). 

F o r  infer ior  as te ro ids  

The angle pX - qX1 , where X is the mean  

3 
1 In other words,  the quantity ( - p / L  ) t q = -pn t qn 

The following canonical variables a r e  now introduced: 

w h e r e X = l t g t Q ,  h = Q - X  a n d Z = g t Q .  1 '  

The equations of motion (1) become 

4 

(4) 
c 



The f i r s t  s tep  in the solution i s  the reduction of the problem by one degree 

of f reedom, by elimination of the f a s t  variable y 

p rocess .  

through an averaging 
0 

The reduced sys tem w i l l  cor respond to  the Hamiltonian 

where  

and 

The canonical t ransformation from the var iables  (x, y) to ( E ,  q )  i s  formally 

generated by a function 

such that 

2 
It corresponds,  with a n  e r r o r  of O(r ), to a complete solution of the 

von Zeipel equation 

5 



under the conditions 

and 

This function wil l  not be determined, since it i s  not needed fo r  the purpose 

of this work. 

With the introduction of the Hamiltonian +, the corresponding equations 

of motion give 

.I, .e, 

= L". - 
0 q 

H". = const 

and 

s o  that  the new sys tem has two degrees  of f reedom. The var iable  q can 

be obtained by quadrature .  F o r  a fixed value of E the function + can be 

evaluated numerically a s  a function of the five pa rame te r s  Eo, 5 ,  , 5,. q1 

and q2. 

0 

In the second stage of solution, a new canonical t ransformation to  the 

It wil l  be defined by a generating function var iables  (X,Y) i s  introduced. 

6 



. 

where  

Assuming fur ther  that both S and the new Hamiltonian F can be developed 
in power s e r i e s  of 1 I 2  , we can write 

1 /2 - s = so + s t s1 4- * * .  = so -t € S ( X 0 , X 1 , X 2 ;  q l , q 2 ; € )  1 I 2  

1 I 2  
F =  Fo + F + F1 + . . .  = F ( X 0 , X 1 , X 2 ;  Y 2 ; e )  , 

so  that Xo = 5 , .  The function S sat isf ies  the von Zeipel equation 

where  

- =z 1 (X0 t p x 1 r 2  t q x l  . 
FO - + 0 1 5 = x  

The basic assumption for  the solution of the above equation is that the 

derivative 

7 



i s  of the o rde r  of p 1 I 2  o r  higher .  

(Hori, 1960) .  

This is the width of the resonance region 

The von Zeipel method gives for  S 1 12 the equation 

Fur the r ,  since Q = 0 ,  F1/, = 0 .  
1/2 

The f i r s t -order  par t  F of the new Hamiltonian i s  defined by 
1 

F 1 ( X O , X 1 ,  X2;  Y2; E )  = min $ 1 h\ E =  X 
r )= Y 

0 0  0 
and q 1 1 0 1  
general ,  be a function of 

= q (e , E  , c2, q2); that is ,  the point r) 1 of minimum of 4 1 will, in  

, 5 , c2, y2.  If we now define 
0 1  

the function S will satisfy the equation 
1/2 

o r  

8 



Since S has to  be real ,  the interval of variation of i s  defined. Moreover,  

the minimum of + with respec t  to ?l is ze ro  whatever ’1 There  wil l  be 

circulation o r  l ibration in T 

1 /2 1 

1 1 2’  
if 1 

f o r  each value of q2 and of the pa rame te r s  X 

6, does not contain t e r m s  independent of q in the sense  that its Four i e r  

representat ion will be 

X1, X2.  Certainly, the function 
0’ 

1 

)I- (Xo,X1,X2) exp [ fi ( l q ;  k - t k 2 2  q 
kl’ k2 

kl# 0 k2 

In the circulation case ,  equation (12) ,  with the choice of only one of the signs,  

defines 

the sign changing a t  every end point of the l ibration interval.  
1 ’  In the l ibration case,  i s  a two-valued function of 1 

With a n  e r r o r  of the o r d e r  of E ~ / ~ ,  the new Hamiltonian is 

Along any solution of the differential sys tem generated by the original - 

3 /2  Hamiltonian, F differs f rom a constant by a quantity of the o r d e r  of E 

and generates  the one-dimensional dynamical sys tem 

x2=ay2 a F  , Y 2 - - -  - a F  
ax2 a 

9 



On the other  hand, 

and 

** :% :: 
It follows that H and L a r e  constant, o r  in t e r m s  of Keplerian "mean 

mean e lements ,  " 

(17) 

(18) 

** 
a = const , 

::*2 1/2 ** 
(1 - e ) cos I = C = const . 

** ** ** 
The definitions of a , e , and I a r e  

** **2 - 2 
a = L  - ( X o + p X 1 )  

- - **2 **3 
n a 

**2 ** 
( 1 - e  ) a  = 

1 

2 
G**2 = (Xo t pX1 - X2) 

qxl 
Gl'* xo i- p x l  - x2 * 

*:g 
- -  H -  

\ I rL  

10 



3 .  CHARACTERISTICS O F  SECULAR MOTION 

With an  e r r o r  of O(c), we a r e  able to  develop the general  fea tures  o f  the 

secular  motion a s  follows. W e  have 

La = 5, t P E l  = 5, + P(X1 + a?, ) t O(E) 

t O ( r )  , *a 
= 5, t PX1 t P- I2 t O(c)  = L t p a  a q1 q1 

so that 

*%1/2 2 
a = L  * a2 =(a  t p'sl/z) t O(E) a? 

* ** *$:l 12 as, /2 
a = a t 2pa t O(E) . 

aT  

Making use of equat ion ( 1  9), we have 

** :;*- 3 12  
- pn t q = -  P a  + 9  

and 

Equation (21)  and the definition of S give 
112 

a *  a 
a = a , f A a  , ( 2 2 )  



where  

:k 5 *::: (1 - 9 a**3/2 ) 
a o =  T a  5P 

and 

I t  follows that in the l ibration case  the mean semimajo r  axis  (averaged over 

short-per iod perturbations) will osci l la te  around the value a 

if n 

semimajor  axis corresponding to exact resonance. Fu r the r ,  the value of 

a 
0 .l< 

Aa".. 

maximum value of Aa". corresponds to  Y - 1 
(p, = 0. Therefore,  

t 
Note that  0 '  *t t ** 

= q / p  , the value of a is equal to  a , which i s  the mean mean 0 

4, '8% 

can never  be ze ro  and will always be l a rge r  than the maximum value of 
N 

On the other hand, by definition 9, is always nonnegative, so  that the 

(Xo, X1, X2; Y2), which gives 0 rlr 

= 

We conclude that long-period perturbations on the semimajo r  axis  a r e  of 

the o r d e r  of E 

W e  a lso  s e e  that a*'. is  affected by two very different per iods associated 

with Y1 and Y2.  

112 , l a rge r  than the values expected in the nonresonance case .  
.b 

F r o m  the equations 

- a F  = pn .b ,,. .b ,,. - q t O ( E )  = O(E 1/2) Y1 - - -  
ax, 

and 

12 



it follows that the period corresponding to Y 2  is l a r g e r  than that corresponding 

to  Y1; that  is, 

* 
The amplitude Aa 

when Y1 = q 

i s  associated with T since L e  maximum o 1' 0 
1 (l ibration case ) .  

.I. 

Aa-'. is reached 

.b 

By definition, i f  the angle Y undergoes a l ibration process ,  Aa.'. will 1 
be z e r o  at  the end points of this libration. 

maximum and minimum values Y can r each  in o r d e r  to resu l t  in a r e a l  S 

The end points correspond to the 

1 /2 '  1 

If ?rl is the mean value of Y and 6 i s  the semiamplitude of l ibration, 

It can be expected that if the influence of 
1 

then Aa* will  be ze ro  at 

Y 2  in is not very  strong, t heny l  = '1 approximately.  When Y 1  i s  

maximum or  minimum, Aa". is zero; therefore ,  there  will be a constant phase 

shift between the oscillations of Y and a in t ime.  

f 6. 
0 0 
1 Jr 

* 
1 

** ** 
With respec t  to  e and I , a s  a consequence of equation (18) we s e e  

Since these two 
&& ** 

that  when e 

elements  a r e  affected by the long period T2, in general  the i r  s ecu la r  motions 

wil l  have such  a period. 

on a a r e  l a r g e r  than those on e and I .  In fact, 

increases ,  Iq.- decreases ,  and vice ve r sa .  

It i s  also possible to show that the perturbations 

x = x o t -  az = X o t O ( E )  

0 a Y O  

- ax I2 112) t - = x1 t O(r - x i  +% aql  

I2  1 1 2 )  t - = x2 t O ( E  
az x 2 = x  t- 

2 aY2 aq2 
1 

13 



so  that 

:% ::: 1 / 2 )  H = H t O(E 

G - H = G  :% * - H  ** t O ( E  1 /2 )  

o r  

L - E H = O(E) 
9 

E H = O(E 1 / 2 )  
9 

6; - H = G . *:\ t O ( C ~ / ~ )  = O(E 112) . 

finally, a is O(E ‘I2) and e , i a r e  O ( E ) .  We conclude that the per turbat ions 

in the eccentricity and inclination a r e  relatively smaller than are the 

per turbat ions in the semimajor  axis .  

a s  compared with those of O(E ‘ I2 ) ,  we obtain 

If per turbat ions of O(E ) a r e  neglected 

Y2  = Y 20 ’ ( 2 7 )  

and X 

perturbations,  which a r e  of O(E ) )  will  be given by 

X , X2 a r e  constant. The mean elements  (averaged  over  short-period 
0’ 1 

14 



/2 
, k 2 = X 2 + - -  , 12 = X , $  = x t -  

1 87, a‘12 0 0 1  

/ 2  .I< -8, ,,. ,,. 

70 = n t t y 0 0 - 3 q -  ’ 

1 2  4. .I, ,,, I. 

71 = (P” ’ - q)t  t Y l 0  

/2 
‘12 = y20 - q ’ 

where  in the right-hand m e m b e r s  the variables 7 

by Y1, Y 2 .  
SlI2 is a known function. 

‘1 can be substituted 1’ 2 
This  is the complete solution, with a n  e r r o r  of O ( E ) ,  since 

In the circulation case i t  can be defined as 

and in  the l ibration case,  

0 
1 where  7 

minus sign in  equation (12) depends on the variable ’1 

is a function of Xo, X1 ,X2 ,  and q 2 .  

0 

The choice of a plus o r  a 

being in the interval  1 
i Yl t 6 o r  P, - 6 5 q l  ql  0 -  = y1 t 6 , respectively.  y 1  - 6 = T I  < T l  

- 

15/16 



4 .  MOTION O F  PERIHELION 

The final stage of solution corresponds to the analysis of the one- 

dimensional system generated by the Hamiltonian a s  defined by equation (12); 

that i s ,  

3 I 2  Since X and X a r e  constants, it follows that, neglecting terms of O(E ), 

we have F1 = const or ,  according t o  equations (6)  and ( l l ) ,  
0 1 

I y2 = y 2  

x ) and (X X1,X2), respectively.  Moreover,  

for  every value of q2, 6 

O b  
o’xl’ 2 where  x and X stand fo r  (x 

X and X a r e  constants. 

the minimum point of D with respect  t o  

o r ,  within our  precision, with respect to Y1 for  every  value of Y2, Xo, Xl , X2. 

The value y1 = T~ (Xo, X1, X2; Y 2 )  is defined by 

1 0’ 1’ 2 

0 1 
6 

v 
Both q l o  and D 

fixed values of X 
independent of the.par t icular  value of E .  

(X2, Y2)  will  therefore  show the long-range behavior of perihelion and ** 
eccentr ic i ty .  F o r  a fixed value of a , the pa rame te r s  we a r e  left  with a r e  

e and I . Since these elements a r e  re la ted by equation (17), fixing the 

value of C will  produce curves  of D 

pa rame te r  e * ** ** 
D = const curves  in the plane (w , e ). Such a plot immediately gives 

the l ibration o r  circulation character  of w 

of E .  

can be determined numerically,  and the final outcome fo r  * * 
and X1 will be the function D = D 

A plot of D 

(X2, Y2),  which is 

= const in  the plane 
0 * 

** ** 
** 4. -r 

a s  functions of Y2 = w with the only ** 
. F r o m  this one-parameter family of curves ,  we can construct 

** 
, which appears  to  be independent 

17 



The scaling of the mathematical  model with the actual  motion of an 

as te ro id  depends essentially on a se t  of observed values during a t ime not 

shor te r  then the period T1 . Both the l ibration ( o r  circulation) charac te r i s t ics  

of Y1 and the amplitude of oscillation of a", Aa , will allow the determination 
* 

of a::: :: * >:c ::: ::: 
. The constant C and a pa i r  of values (e  , w ) will identify the par t ic-  
.I, 

ular D". = const curve, that i s ,  the libration o r  circulation p rocesses  in Y2  

together with the ranges  of variation of e and I . With the value of a"", 

the m o r e  important pa r t  (pn - q) of the mean motion of Y1 can be found, 

that i s ,  its period, which should be compared with the observed value. In 

o r d e r  t o  evaluate the period of Y2, we can use the equation 

** :: * 
** 

* 
If we construct  a curve of 1 /E (aD / a Y 2 ) - l  ve r sus  x f r o m  X2(min) to  2 
X2(max),  the area under this curve will immediately give half the period 

Y 2 .  Of course ,  in the construction of the right-hand member  of equation 

the relation between Y 2  and X mus t  be obtained f r o m  the corresponding 

D = const curve, while X and X a r e  kept constant. 
:: 2 

0 1 

. '  
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5. T H E  TROJAN GROUP 

When p = q = 1 (exact resonance) and I = e = 0 ,  the corresponding 

solutions a r e  the Lagrangian triangular equilibrium points. 

problem of totality of motions in  the vicinity of this 1 /1  resonance case  has 

been chosen a s  an  example of the general  theory descr ibed in the previous 

sect ions.  

The general  

F o r  a = 1, the disturbing function 1 /A (equation (2 ) )  was averaged 

numerically with the use of the parameters  

ranges : 
C, e ,  y l ,  and y in the following 2 

c = 0 . 1  ( 0 . 1 )  0 . 9  

e = 0. 01 (0.  01) 0. 99 

= 0"  (15" ) 180" 

= 0" ( 1 5 " )  180" . 
Y1 

y2 

The resul t  i s  the function D(6 , 6 , E  ; q l ,  q2), given by 0 1 2  

0 

according to equation (7) .  With the use  of C, e ,  and y a s  pa rame te r s ,  the 

function D has  been plotted versus  q l ,  a s  shown in F igu res  1 through 36.  

function D is related to + 
the values of the parameters ,  the variable q 

The amplitude of libration depends strongly on the values of C, e ,  and y 

m u s t  be noted that since a". i s  not a constant a t  this stage,  the function D is not 

constant through the motion. 

Hamiltonian is the complete function + by equation (6).  

2 
The 

by equation (7). These f igures  show that whatever 

undergoes a l ibration process .  

It 

1 

1 

4. 2' 

Within the precis ion of the theory,  the constant 

1 9  



The second s tage of solution is  the determination of F1 (equation ( l l ) ) ,  

which we do by inspection, determining the minimum value of D fo r  every  

value of C, e,  and y with respec t  to q and the point of minimum 

q l  (C, e ,  y2).  
the minimum is  at tained close to 7 

the minimum shifts to  o r  n e a r  q = 0" . Therefore ,  the maximum deviation 

of the m e a n  semimajor  axis a f r o m  the mean value a 0 
q l  = 60" for  orbits of smal l  eccentricity and around T 1 
orbi ts .  Moreover,  since m e a s u r e s  the mean elongation between Jupi ter  

and the asteroid,  f o r  q l  = 0 and e = 0 the disturbing function is discontinuous, 

while f o r  = 60" and e = 0 the minimum is at  exactly 60" , which defines the 

Lagrangian equilibrium points (q = 60" o r  60" t 180" ) .  

2 1 0 
F r o m  Figures  1 to 36 we s e e  that for  small eccentr ic i t ies  

= 60" . As the eccentr ic i ty  inc reases ,  1 

.b *P .b 1 *,* 
is reached around 

= 0"  fo r  highly eccent r ic  

1 

1 

1 

Once we have the minimum of + for  every  C, e,  and y we can produce 1 2' 
a plot of F 1 
this stage a"* is constant. 

to 0 .  9 by s teps  of 0 .  1 .  
y 

constant because a".''. is constant, any line in  these  graphs drawn para l le l  to 

the Y 

(equation ( l l ) ) ,  o r  actually of the minimum D':' of D, since at 

The basic  pa rame te r  f o r  this plot is C f r o m  0 .  1 
4. 

Figures  37 to 4 5  show the function D"' plotted against  
.b 

f o r  every  C by use of e as  a pa rame te r .  Fu r the rmore ,  s ince D"' is 
.L .b 2 

axis will define the variation of e as a function of w along an orbi t .  2 

In o r d e r  to make evident the charac te r  of motion of the perihelion, we 

redrew the previous graphs,  using C as  the main pa rame te r  and plotting 

curves D = const in the plane (w, e) .  

curves .  

point f o r  every value of C f r o m  0 .  1 to 0 .  9.  The l ibrat ion center  remains  

close t o  w = 135', and the corresponding eccentr ic i ty  inc reases  f r o m  0 .  29 

to 0 .40  a s  C increases  f r o m  0. 1 to 0.  9, while the "energy" constant D". 

dec reases  f rom 0 .  722 to 0 .  670 and then inc reases  again t o  0 .  744. 

location of the saddle point is always around w = 30°, and the corresponding 

eccentricity increases  f rom 0 to  0 .40 .  

value 0 .  7 ,  there is a shift  of the saddle point that  reaches  w = 90" at  C = 0. 9 .  
The energy constant D dec reases  f r o m  0. 632 to  0. 551 and then inc reases  t o  

0 .  727. 

* 
Figures  46  t o  54 show such isoenerget ic  

In the interval  ( 0 ,  IT) of yz,  we find a l ibration center  and a saddle 

.b 

The 

When the constant Cgoes  above the 

:; 

20 



However, f o r  C l a r g e r  than 0 .2  and sma l l e r  than 0.  8 another pair  of 

l ibration center  and saddle point appears  in the picture.  

cen ter  is at w = 90"  and corresponds to  highly eccentr ic  orb i t s .  F o r  such 

centers  the eccentricity decreases  f r o m  0. 94 to 0 . 7 1  a s  C increases  f r o m  

0.  3 to  0 . 7 .  The corresponding energy constant D dec reases  f r o m  0 .214  

t o  0 .  172 and then increases  to  0.212 for  C = 0 .  7 .  The overal l  mechanism 

appears  to  be a shifting of s table  points into unstable ones, which goes through 

a complex phase space configuration for  intermediate values of C. 

however, that all numbers  shown a r e  only approximate,  s o  that a very  fine 

s t ruc ture  of the sys tem may be completely missing.  In any event, the two 

paral le l  lines at  e = 0 and e = e (which is  defined by C) always correspond 

to  asymptotic motion f rom o r  toward unstable configurations. Moreover,  fo r  

a l l  values of C, 

defined by a pair  (w ,  e) ,  the variable w may undergo l ibration o r  circulation. 

This  new libration 

.L -8- 

We note, 

max 

.I. 

according to the value of the energy constant D"', which is 

Table 1 shows the above description in a condensed f o r m .  The position 

of an  actual situation in  the described totality of motions requi res  a cer ta in  

amount of information f rom observations o r  numerical  integration. 

information should cover a t ime at l eas t  equal t o  the period of l ibration in 

y l .  this will  allow 

the computation of the integration constant a by equations (23 )  and (25 ) .  

An approximate value can be obtained by interpolation. 

relation between n"*- and (max Aa"')/a' within the region of resonance for  

Such 

.I. .I, 

If we know the actual  value of the rat io  (max Aa"')/a'' 
:; :; 0' 

Table 2 shows the 
4, .L .I, .L 

0 
:k * 

E = that i s ,  for  In - 11 --(E 1/2 0.  035. 

:k * ::: :: 
The value of a thus found determines the mean mean motion n of the 

as te ro id .  We note, however, that, a s  seen  f rom Table 2,  fo r  one value of 

Aa /a Such a 

double determination must  be eliminated by a reference once m o r e  to the 

observed secular  t rend of Y o r  Y (direct  or  re t rograde  motion). If the 

amplitude of l ibration of q l  i s  known, the function S 

** .I, .I# * *  
0 there  a r e  two values of n-'" (o r  a ) satisfying that value. 

0 1 
can now be determined, 

1 /2  
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:k 
a s  can L e  perturbations of long period T 

evolution of e 

by a pair  of such elements  a t  some epoch, given by observations o r  numerical  

integration. 

The value of D that defin s the 

along an orbi t  over the longest period T 2 is defined 
1' ** ** 

and o 

The las t  information given by the theory i s  the long period T2 ( of 

ak *c :k * T . 8 .  * * h a *  

l ibration o r  circulation) of the mean mean argument  of perihelion. 

the orbi t  in the (o , e  ) plane i s  defined, the function e = e i s  

known together with the values of a 

developed the re  can therefore  be applied. 

Since 
.I.& 

** 
and C.  Equation (32)  and the method 

Table 1. Location of stable and unstable points in the (w, e )  plane 

w 
w w (additional 

(saddle libration 
D* e point) D* e center) D* 

(libration 
center) = emax e 

0.722 0 . 2 9  30. 0 . 6 3 2  0 - - - 0 . 1  0 . 9 9  135' 

- - - 0 . 2  0. 98 135' 0 . 7 0 1  0 . 2 9  30' 0 . 6 0 9  0 

0. 3 0. 96 135' 0 . 6 8 5  0 . 2 9  27. 0. 586 0 90' 0 . 2 1 4  0 .  94 

0 . 4  0.  92 130' 0 . 6 7 5  0 . 2 9  28' 0. 566 0 90' 0. 187 0 . 8 9  

0. 5 0. 8 7  143' 0. 670 0. 32 30. 0. 552 0 . 2 6  90' 0. 172 0 . 8 4  

0. 6 0 . 8 1  140' 0. 672 0. 32 30. 0. 551 0. 31 90. 0. 176 0 . 7 8  

0. 7 0. 72 143' 0. 688 0. 34 30' 0. 519 0. 36 90' 0 . 2 1 2  0 . 7 1  

0. 8 0. 6 1  165" 0 .703 0 . 3 9  45. 0 . 6 4 0  0. 38 - 

0 . 9  0 . 4 4  

- - 

135' 0. 744 0 . 4 0  90' 0 . 7 2 7  0 . 4 0  - - - 

22 



Table 2.  Maximum relat ive oscillation of mean  m e a n  semimajo r  axis 

I max A a"' 1 * 
0 

4, J. 
1. I max Aa"' I a 0 

a Orbi t s  

0 .  965 1 .  02404 0 .  999275 0.0247608 0 .  0247788 

0 .  070 1.  02051 0 .  999472 0 .  0210415 0. 0210526 

0 .  075 1 .  01702 0 .  999637 0.0173850 0. 0173913 (+o > 0, re t rograde)  

0. 080 1.  01 356 0.  999770 0.01 37899 0. 01 37931 

0.  085 1 .  01013 0 .  999872 0.0102551 0 .  0102564 

0 . 0 9 0  1.00672 0.999943 0.00677928 0.00677966 

0. 095 1.  00335 0. 999986 0.003361 30 0. 003361 34 

I 

I 

1 . 0 0 0  1 .000  1 . 0 0 0  0 . 0 0 0  0 . 0 0 0  (+n = 0, equilibrium) 
~ ~~ ~~ 

0 . 0 0 5  0.  996680 0.999986 0.00330574 0.00330579 

0. 010 0.  993388 0 .  999945 0.00655702 0.  00655738 

0 .  01 5 0.  990123 0 .  999878 0.00975491 0. 0091 5610 

0 .  020 0. 986885 0. 999785 0.0129005 0 .  0129032 (+o < 0, d i rec t )  

0.  025 0. 983673 0 .  999668 0.0159947 0 .  0160000 

0 .030  0. 980487 0.999526 0.0190386 0 .01  90476 

0.  035 0.  977327 0 .  999360 0.0220331 0 .  0220472 

t 



6. HIGHER ORDER SOLUTION 

c 

We a r e  left with the question of whether o r  not the process  of solution 

can be extended to higher o r d e r s  of approximation. 

correspond to von Zeipel 's  equation 

The next s tep  would 

where  the functions S and F have to  be determined. In the f i r s t - o r d e r  

(E /') solution, equation (10) was  solved with F defined a s  the minimum 
1 3 / 2  

1 
of +1 with respec t  to  

Y1 = q 

i nc reases  to E ~ / ~ ,  we should def ine (Hori, 1967, pr ivate  communication) 

this resulted in a stable equilibrium solution at 1; 0 
(Xo, X1, X2; Yz) .  F o r  such a condition to be satisfied a s  the o rde r  

but f o r  this definition to  be consistent, we have to  prove that the quantity in 

1 '  b racke ts  takes  the same  values at the two end points of the l ibration in 7 

This  is t rue ,  of course,  for  as /aq l .  

tion of such an  hypothesis is not tr ivial .  

and inclination, since a t  the end points of the l ibration in q 

axis a 

tation of the disturbing function by the c l a s s i ca l  development. 

t e r m s  of the fif th o r d e r  in the eccentricity and in the s ine of the inclination, 

we have (Brouwer and Clemence, 1961): 

But fo r  a l l  other t e r m s ,  the verifica- 

Assuming moderate  eccentr ic i ty  
1 /2 

the semimajor  1 * 
is not unity, a t  those points we might be able to have a valid r ep resen -  

Neglecting 

2 5  



* 
where  a < 1 and 

- 0 0  

.L 2 *‘ -4j t 2 a e r ~  * 1 :k2 -1, * 1 *2 - 4 u + B ~ ~ ~ )  - 16 e u 
a 

t a*‘ D4 ) Af] cos jq  1 
2 :::2 2 :k 3 - 8 j  a D .,. t 4 a  D ,k3 * .,- 

a a a 

. cos ( j  + 1)  q l -  2q2 [ 
he re, 

* * 
a = a  

and 

A. = bj (a*) 
J -1/2 

B. = bj (a*) 
J -3 /2  
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a r e  the usual Laplace coefficients. 

reciprocal  for  a > 1, it s e e m s  possible to  show that, in  fact, the definition 

contained in equation ( 3 4 )  is meaningful. Such a proof, nevertheless ,  must  

be considered with much care ,  since expression ( 3 5 )  i s  only a crude 

1' approximation for  the function r$ 

By use of the above expansion and i ts  
.I, 1. 

Even if  such a proof could be achieved in i ts  full generality, we would 

still wonder whether o r  not the process could be continued up to  any o r d e r  

of approximation. 

s e r i e s  thus obtained convergent?  In par t ,  we can answer the question of the 

validity of such a solution by comparing i ts  resu l t s  with observations o r  by 

numerical  integration. As  we have a l ready  mentioned, such verification 

has been very good indeed in the problem of the motion of Pluto (Hori  and 

Giacaglia, 1965);  we hope it will be equally good in  the 1 /1 rational ca se .  

Even then, the l a s t  question remains  - a r e  the fo rma l  

27 I 2 8  
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Figures  3 7 - 4 5 .  

Minimum energy curves  f o r  long- 

periodic perturbations.  
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Figures  46-54. 

Isoenergetic curves  for the long-periodic motion 

ot perihelion. 

61 
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